DEANE CONSULTANCY LTD

Peter@deanecl.nz

19/106/C-A

Panetiki Ltd, 20 Omaha Block Access Rd Flood Analysis of Overland Flowpath Adjacent to Accommodation Unit 05

Preamble:

The Auckland Council require a flood report to quantify the flood risk to Accommodation Unit 05 should the 600mm diameter culvert under the roadway block during a flood event. The total catchment area (page 1) is 49,370m2 (ie 4.94 ha or 0.049 km2). The existing dwelling on site is built over the 600mm diameter culvert pipe. It is proposed to remove this building and construct a new Accommodation Unit 05 over approximately the same footprint (page 3).

Page 1 attached shows the catchment in question at pre-development stage. Deane Consultancy has been engaged to provide a flood report.

Proposed post development catchment:

The proposed development will capture rainstorm from all impermeable areas. This will be controlled by reuse and detention tanks for roof water, and detention tankage in the case of paved areas. The bulk of the catchment will remain undeveloped in bush and lawns with a number of larger trees, mainly pohutukawa. The conservative assumption that the catchment will be 50% developed has been made in the flood assessment calculations.

Flood analysis:

Two calculations are made for the 1 in 100 year flood flow:

The Rational formula (page 4 attached)

1.19 cumec

TP108 method (worksheets p 5 and 6 attached)

1.75 cumec

The higher 1.75 cumec figure is recommended for design.

Floodway:

Should the 600mm culvert pipe block, the flood flow will cross the roadway. This is the current overland flow path which can be seen on page 2 attached. The blue line shown on council geomaps is accurate and does approximate the current situation. The crest of the roadway at the lowest point of the sag curve is at about 8.5m RL.

DEANE CONSULTANCY LTD

Peter@deanecl.nz

The decision has been made that Accommodation Unit 05 will be built on timber piles or poles with no base boarding. It will be raised significantly higher than the existing building with a floor level of approximately 8.50m RL (ie equal to the crest of the road), or 700mm above ground level at the flood-way (see pages 3 and 4). If necessary a small amount of superficial soil can be scraped to form the flood-way at the roadside edge of the building. To the south of there, the existing ground falls away and the 500mm clearance to flood level is easily achieved. Calculations for the flood-way using the Mannings formula are on page 4 and cross section X-X on page 3 indicates the minimum cross section required. Beyond the rear of the house, floodwaters will then be free to spill over the bank down to the beach as they are free to do now.

Summary:

By use of conservative analyses, a 100 year ARI flood flow of 1.75 cumec has been calculated. The proposed construction of Accommodation Unit 05 and associated landscaping work, if detailed as specified in this report, will not impede flood flows from the overland flow path should the culvert block.

No diversion of runoff to another catchment will occur. Flood waters will pass at below 500mm freeboard from the floor level of the unit.

Recommendations:

That Deane Consultancy be engaged to check final site plans for Unit 05 to ensure that the requirements of this report are adopted in the plans. In addition, it is recommended that we also observe building and landscape construction in the areas affected by this report.

Environmental effects:

No diversion to another catchment occurs. There are no effects whatsoever on any other properties. All runoff is controlled in scour free channels. Environmental impacts are less than minor.

P A Deane, CMEngNZ,CPEng. 27 November, 2021.

Attachments:

Page 1 (A3) Catchment boundaries.

Page 2 (A3) Geomaps

Page 3 (A3) Floodway, proposed building locations

Page 4-10: Catchment analyses

11/24/21, 10:45 AM

Auckland Council GeoMaps

Address Search the map...

Info

Legend

Results

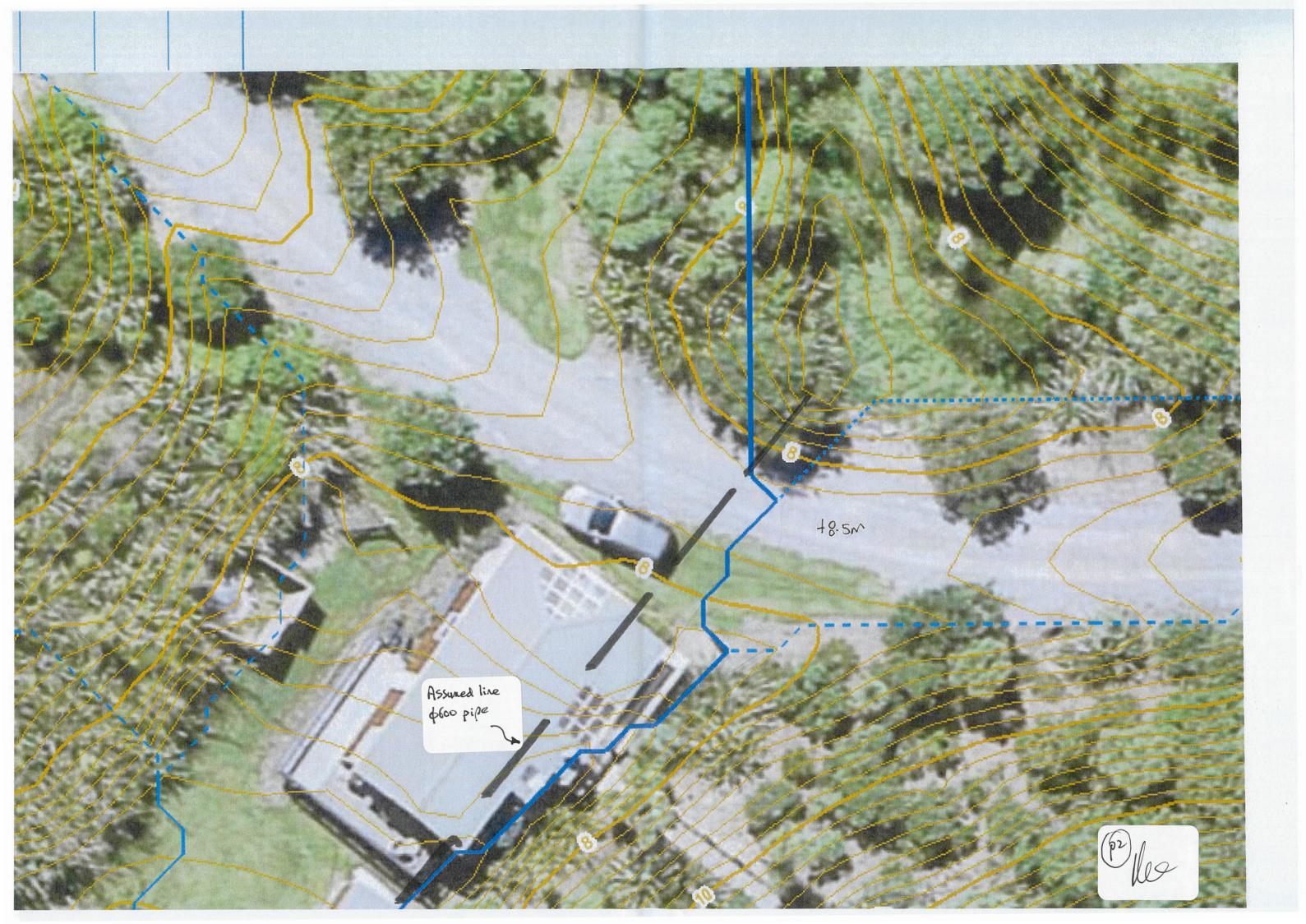
Catchments And Hydrology

Emergency Management

Biodiversity(Public)

LandCover

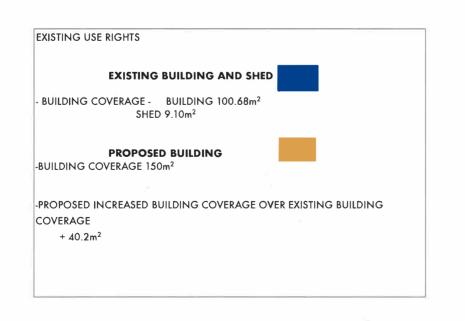
Marine Moorings

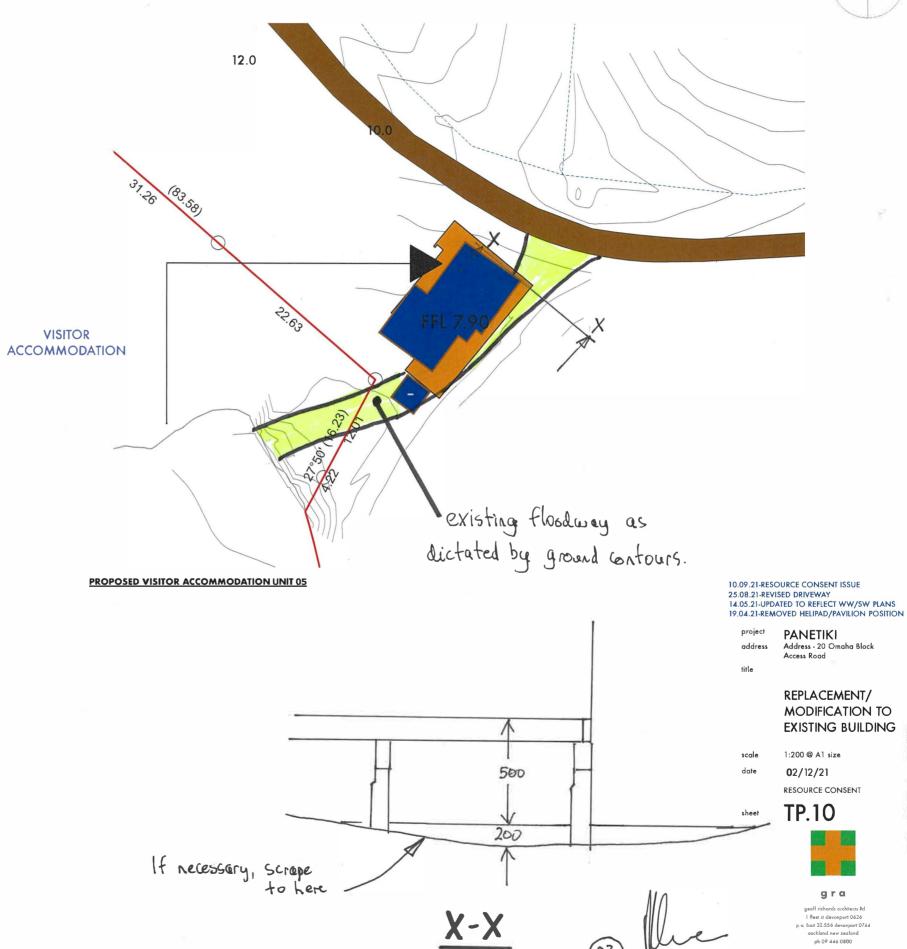

Address

Contours

Landbase

Basemap





Images of existing building on site

peter@deanecl.nz

021 252 6121

Client: Paretili

Rational formula

Date: Zulilly

Signed:

A

Floodway

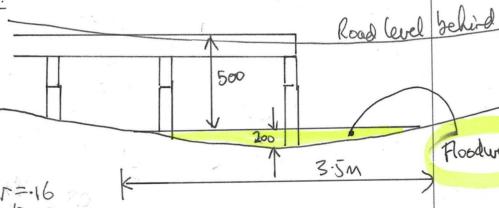
Curdwelged = 0.35 (dwelged = 0.90 Scheet c= 0.65 (50% developed case)

To assure 10min.

R(P 8.5 scenario (see p4-7)

Select 22.4mm/ womin (lin 100 year)

6. I = 6,22.4 mu/hr = 134 mu/hr


A= 49.370m2= 0.069 km2

.. Q (cure) = .278 CIA

= .278x.65x134x069 m35+

= 1.19 m35-1

Manning's formula:

A= 156m2 P= 3.5m = 1=.16

N= .025 (bore ground)

S=10% 512= .316

2 Q = .56x.30x.316 = 2.12 m35+

> 1.75m35 30 0K

Worksheet 1: Runoff Parameters and Time of Concentration

Project Panetiki By PADeane Date 24/11/21

Location Accom 5 Checked Date

Circle one: Present Developed: Partial Future devit assumed.

1. Runoff Curve Number (CN) and Initial Abstraction (Ia)

Soil name and classification	Cover description (cover type, treatment, and hydrologic condition)	Curve Number CN*	Area h a	Product of CN × area
Waitemata	Trees, Cours	74	2.47	1.83
series	Trees, Couns	98	2.67	2.42
* from Appendix B		Totals =		4.25

CN (weighted) = $\frac{total\ product}{total\ area}$ = $\frac{\cancel{L} \cdot 25}{\cancel{L} \cdot 9\cancel{L}}$ = $\frac{0.86}{\cancel{L} \cdot 9\cancel{L}}$ la (weighted) = $\frac{5 \times pervious\ area}{total\ area}$ = $\frac{5 \times \circ 5}{total\ area}$ = $\frac{2.5}{mm}$

2. Time of Concentration

Channelisation factor $C = \underline{0.8}$ (from Table 4.2)

Catchment length L = 0.62 km (along drainage path)

Catchment slope $S_c = -\sqrt{33}$ m/m (by equal area method)

Runoff factor, $\frac{CN}{200 - CN} = \frac{86}{200 - 86} = 0.754$

$$t_c = 0.14 \ C \ L^{0.66} \left(\frac{CN}{200 - CN} \right)^{-0.55} S_c^{-0.30}$$

$$=0.14 \times .8 \times .42^{0.66} \times .754^{-0.55} \times .133^{-0.30} = 0.135$$
 hrs

SCS Lag for HEC-HMS... $t_p = 2/3 t_c$

= 81 WIV.

Worksheet 2: Graphical Peak Flow Rate

Project	Panetik		By PADeae	Date _	24/11/21
Location	Acion. 5		Checked	_ Date _	
Circle one:	Present	Developed			

Data 1.

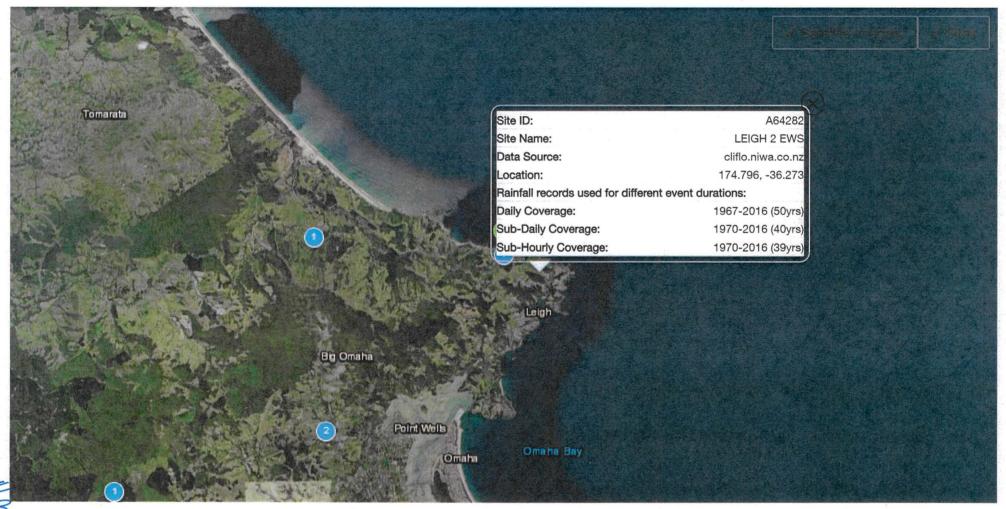
1)

Catchment area
$$A = \frac{0.09}{86} \text{ km}^2$$

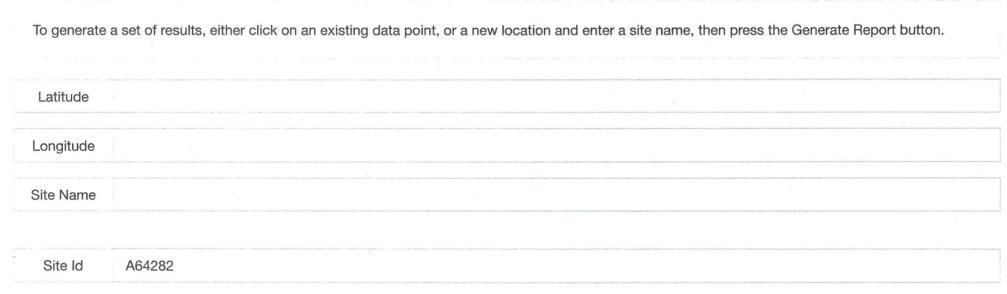
Runoff curve number $CN = \frac{86}{2.5} \text{ mm (from Worksheet 1)}$

Initial abstraction $Ia = \frac{2.5}{13.5} \text{ hrs (from Worksheet 1)}$

2. Calculate storage, $S = \left(\frac{1000}{CN} - 10\right) 25.4 = 4 \cdot 3$ mm


- 3. Average recurrence interval, ARI (yr)
- 24 hour rainfall depth, P₂₄ (mm)
- Compute c* = $\frac{P_{24} 2Ia}{P_{24} 2Ia + 2S}$
- Specific peak flow rate, q* (from figure 5.1)
- Peak flow rate, $q_p = q^* A P_{24} (m^3/s)$
- Runoff depth, $Q_{24} = \frac{(P_{24} Ia)^2}{(P_{24} Ia) + S}$ (mm)
- 9. Runoff volume, $V_{24} = 1000 \times Q_{24}A$ (m³)

Storm #1	Storm #2	Storm #3
100		
210	Fig A6	
· 71)	
.17		
1.75/		


High Intensity Rainfall Design System V4 (/)

Location

Site Information

Output Table Format

- O Depth Duration Frequency
- O Intensity Duration Frequency

Generate Report

Spreadsheet Download

Site Details Historical Data RCP2.6 Scenario RCP4.5 Scenario RCP6.0 Scenario RCP8.5 Scenario

Rainfall depths (mm) :: RCP8.5 for the period 2031-2050

AEP 10m 1h 120h 20m 30m 2h 6h 12h 24h 48h 72h 96h

	ARI	AEP	10m	20m	30m	1h	2h	6h	12h	24h	48h	72h	96h	120h
	1.58	0.633	8.69	13.4	17.0	24.6	34.2	52.9	66.0	79.4	91.6	97.7	101	104
	2	0.500	9.56	14.7	18.7	27.1	37.7	58.3	72.8	87.4	101	108	112	115
	5	0.200	12.5	19.3	24.5	35.6	49.6	76.8	96.1	115	133	143	148	152
	10	0.100	14.7	22.7	28.8	41.9	58.4	90.6	113	136	158	169	175	180
	20	0.050	17.0	26.2	33.2	48.4	67.5	105	131	158	183	196	204	209
	30	0.033	18.3	28.3	35.9	52.3	73.0	114	142	171	198	212	221	226
	40	0.025	19.3	29.8	37.8	55.1	76.9	120	150	180	209	224	233	239
	50	0.020	20.0	31.0	39.3	57.3	80.0	125	156	188	218	233	242	249
	60	0.017	20.6	32.0	40.5	59.1	82.5	129	161	194	225	241	250	257
,	80	0.012	21.6	33.5	42.5	62.0	86.6	135	169	203	236	253	263	270
1	100	0.010	22.4	34.7	44.0	64.2	89.7	140	175	211	245	262	273	280
	250	0.004	25.5	39.5	50.1	73.2	102	160	201	242	281	300	313	321
	Rainfall d	lepths (mn	n) :: BCP8	— Area	-	2081-210								
	ARI	AEP	10m	20m	30m	1h	2h	6h	12h	24h	48h	72h	96h	120h
	1.58	0.633	10.3	15.9	20.1	29.2	40.3	60.8	74.5	88.5	100	106	109	112
	2	0.500	11.4	17.6	22.2	32.3	44.7	67.4	82.8	97.7	111	118	122	124
to it	5	0.200	15.0	23.2	29.4	42.7	59.1	89.6	110	130	148	157	162	166
	10	0.100	17.7	27.4	34.7	50.4	69.9	106	131	154	176	187	193	197
	20	0.050	20.5	31.6	40.1	58.4	81.0	123	152	179	204	217	224	229

- 1														
	ARI	AEP	10m	20m	30m	1h	2h	6h	12h	24h	48h	72h	96h	120h
	30	0.033	22.1	34.2	43.4	63.2	87.7	134	164	194	222	235	243	248
	40	0.025	23.3	36.0	45.7	66.5	92.4	141	174	205	234	249	257	262
	50	0.020	24.2	37.5	47.6	69.3	96.2	147	181	213	244	259	268	273
	60	0.017	25.0	38.6	49.0	71.5	99.3	152	187	221	252	268	277	282
	80	0.012	26.2	40.6	51.5	75.0	104	159	196	231	265	281	290	297
	100	0.010	27.1	42.0	53.3	77.7	108	165	204	240	275	292	302	308
	250	0.004	30.8	47.8	60.7	88.6	123	189	233	275	315	334	346	353

2.2.2 ©2017 NIWA and New Zealand Regional Councils

Terms and Conditions (https://www.niwa.co.nz/privacy-policy)

Creative Commons (CC-BY-NC) 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

